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Construction of coupling coefficients of SU(4) in a 
supermultiplet basis 

S AliSauskas and E NorvaiSas 
Institute of Physics, Academy of Sciences of the Lithuanian SSR, SU-232600, Vilnius, USSR 

Received 25 October 1988, in final form 26 June 1989 

Abstract. Matrix elements of the unit tensor operators of ranks [ l ] ,  [2] and [ l ,  11 in the 
non-orthonormal Draayer basis of SU(4)  are found. The evaluation algorithms for the 
SU(4)  coupling coefficients are proposed for coupling one arbitrary and one four-, six- or 
ten-dimensional irreducible representations of SU(4)  in the SU(2)  x SU(2)  chain, as well 
as in the case of the semistretched coupling. The construction of the overlaps of the 
Draaqer basis states is considered. 

1. Introduction 

The Clebsch-Gordan coefficients of the SU(4) group restricted to SU(2)  x SU(2) play 
an important role in the concrete investigations in frames of the Wigner supermultiplet 
model. The practical algebraic expressions of the SU(4) 2 SU(2) x SU(2) isofactors 
are available only in some cases of the small multiplicities of the irreducible representa- 
tions (irreps) of subgroups (Hecht and Pang 1969, Vladimirov 1984, Vladimirov and 
Gaponov 1986, Hecht er al 1987, Han er al 1989), as well as for the coupling of two 
symmetric irreps of SO(6) in the S 0 ( 3 ) O S 0 ( 3 )  basis (NorvaiSas and AliSauskas 1974, 
AliSauskas 1983b). However, the class of isofactor needed by the supermultiplet model 
(see Vanagas 1988) is different from those considered by AliSauskas (1982, 1983a, 
1984, 1987) and Petrauskas and AliSauskas (1987). 

The coupling coefficients of an arbitrary irrep of SU(4) and an irrep with one or 
two squares in the Young tableau (i.e. the dimension of which is equal, respectively, 
to 4, 6 or 10) is of particular importance for nuclear theory in the case of one- or 
two-particle operators, depending on the spin-isospin variables. NorvaiSas (1981) 
considered the isofactors of the non-orthogonal Draayer (1970) basis in the case of 
the second irrep with one square in the Young tableau. The use of the permutation 
technique for the tensor and projection operators enabled them to avoid the resubducing 
coefficients (transformation brackets) which are necessary in the general construction 
scheme of SU(4) 2 SU(2) x SU(2) isofactors (see (5.25) of Draayer (1970)) and the 
explicit expressions for which (see (3.1) of NorvaiSas (1981) and the correction in 
AliSauskas (1983a)) are very complicated. 

In this paper we succeeded in finding a new interpretation of some structure 
elements of the isofactors considered by NorvaiSas (1981). Taking into account that 
the intrinsic (Gelfand-Zetlin) states for the Draayer basis form the double irreducible 
tensors of the block-diagonal subgroup S (  U(2)O U(2)) we succeeded in deriving the 
explicit expressions for the isofactors corresponding to the matrix elements of the 
SU(4) irreducible tensors of ranks [2] and [ 113. For this purpose the permutation relation 
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for the tensor and projection operators were used, which caused the appearance of 
the Clebsch-Gordan ( C G )  coefficients of the SU(2) groups of spin and isospin. Later, 
the action of the SU(4)-irreducible tensor operators on the standard intrinsic states 
was expressed either with the help of the simple matrix elements, or replaced by some 
SU(2)-coupled structures in frames of the spin-isospin or the block-diagonal SU(2) 
subgroups. In order not to complicate expressions, the dual constructions and sym- 
metries of the coupling coefficients are used. 

The expansion of the linearly dependent states of the Draayer basis (AliSauskas 
and NorvaiSas 1979, NorvaiSas and AliSauskas 1989) may be avoided in our construction 
only when the orthogonalisation coefficients of the dual bases are known. The overlap 
coefficients of the Draayer basis are necessary for orthonormalisation of the basis states 
by the Gram-Schmidt process or with help of the labelling operators of Moshinsky 
and Nagel (1963) or Partensky and Maguin (1978). (Their matrix elements in the 
Draayer basis for arbitrary irreps are derived by NorvaiSas and AliSauskas 1989). In  
the appendix we discuss some alternative derivations of the closed expressions for 
overlaps. 

2. Notation and definitions 

As an alternative to Draayer (1970), the generators of the SU(2) subgroups of spin 
and isospin may be expressed in terms of the SU(4) generators as follows: 

S+ = E32 + E i 4  (2 . la )  

T+ = €42 + El3 (2.lb) 

The irreps of SU(4) will be denoted by the Young tableau [hlhZh3h4] or by ( A l A 2 A , ) ,  
where A ,  = h ,  - h,, A Z  = h 2 -  h3, A, = h,  - h 4 .  They correspond to the irreps [pp ‘p ’ ’ ]  or 
SO(6) where p=f(A,+A3)+A2,  p ’ = ; ( A , + A , )  and p”=i(AI-A3).  

S- = E?, + E41 

T- = E 2 4 +  E 3 1  

S o  = f (  € 1  1 - E 2 2  + E 3 3  - E 4 4 )  

To = f (  E ,  I - €2, - E 3 3  + €44) .  

The basis states of the Draayer (1970) basis accept the form 

where PLsKS, PLTKr are the projection operators of the SU(2) subgroups and 

h2 h,  h4 \ 

I hi -;Ai + k ,  / 
is the special (intrinsic) Gelfand-Zetlin ( G Z )  state. The intrinsic GZ state (2.3) is 
different from those used by Draayer (l970), AliSauskas and NorvaiSas (1979) and 
NorvaiSas and AliSauskas (1989) but it may be also labelled by the same projection 
type parameters k ,  and k3 of irreps f h ,  and ;A3 of the block-diagonal SU(2) subgroups. 
Here k, = f (  K s  + K T ) ,  k3 = f (Ks - K T ) .  Inequalities (2.8) of NorvaiSas and AliSauskas 
(1989) present (in a compact form) the restrictions of the linearly independent states 
of the Draayer basis. (The corresponding inequalities (1 1) of Ahmed and Sharp (1972) 
should be more specified.) 

Let us introduce the operators-double tensors of the block-diagonal subgroup 
S(U(2)O U(2)) in the enveloping algebra of SU(4) which are contravariant with respect 
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to the first SU(2) subgroup and convariant with respect to the second SU(2): - - - = (TTI,l/2l- [ , / ? . I  21 
1 / 2 , 1 / 2  E-ijT,,,? - E32 E n , - !  2 = E41 E!',  :;:Lt:!2 = E,, , 

(2.4) 
The action of these operators on special intrinsic states is equivalent, respectively, to 
the action of operators of the isospin or spin T - ,  S , ,  S-  and T, .  Similarly the 
operators-double tensors EL:;:: with the components E;,','" = E' 31,  E!'." 0.1 - - aE31 E32 3 

etc, may be introduced. For example, the operators Et:;" and E!'*" may be replaced, 
respectively, by T? and &'( S ,  T-  + when E;,:" may be replaced by its eigenvalue. 

We use also the correspondance between the unit (according to Racah-Biedenharn) 
tensor operators uSMS;MT of the supermultiplet chain and the double (covariant) tensors 

n ~ , n i  f l , , f l . i  of the block-diagonal subgroup. Particularly, u l ~ 2 , , 2 , , ~ 2 1 , 2 ,  
u"OO' 

1 / 2 - 1 ~ 2 , 1 ~ 2 - 1 ~ 2 ,  u ' , ~ ~ ' , ~ , l 1 2 - l / 2  and u~1~o?o_)1 ,2 .1 ,2 ,~2  correspond to A::i!ti, A?$:;, Ab:;:,$*' 
and Ab:!/,?;. There is also one-to-one correspondance between ~b , ' ? , :~  and A ~ l ~ . ~ ; l ( j ,  + 
j,= 1, M s =  n , + n , ,  MT = n ,  - n 3 )  for at least M s # O  or M T # 0 ,  when U::::;= 

(l/&')(Ab;bo'+ Ab:;') and ab:$= ( l / f i ) (Abfbo'  -A$ ' ) ) .  The operators a\!:&, U:":;,, 

uo0,, ,, uo0,, U',:::; and ubi:?d are equivalent, respectively, to B\>{!i'/:), -B?/f3:!:)2, 
corresponds to the com- 

ponent x,y2 - x2y, and corresponds to the component x3y4- x4y3 of the antisym- 
metric tensor of SU(4). 

0.  I 

iA,A-A,) 

A'Ji.J)) and B(ji-fd (100ln,.n, 

(0101 (010) 

B( l /2 .1 /2J  
1 / 2 , - 1 , 2 ,  -BY/,?;:{,;; and ( l /&)(B&O) T &:boJ). Here 

Below we shall also use the notation of the decreasing factorials 
a ( a  - 1 ) .  . . ( a - b +  1). 

3. Semistretched coupling of the Draayer states 

Let us consider coupling of the states of the irreps [h,h2h3h4] x [6,&6J to [hjhihjhk] 
with the condition h ,  + h 2 +  K1 + 6> = hi  + h i  (or h,+ h,+ h3 = h i+  h i ) .  This (called 
semistretched) coupling of the SU(4) basis states is multiplicity-free. Special CG 

coefficients of the canonical (semicanonical) basis of SU(4) needed in (5.25) of Draayer 
(1970) turn into a product of some SU(2) CG coefficients. Analogously to the SU(3) 3 

SO(3) case (appendix 2 of AliSauskas (1987)) it is expedient to use the inverse 
resubducing coefficients (the transformation brackets) which in the region typical for 
our problem may be expressed in terms of the expansion coefficients of the linearly 
dependent Draayer states. 

Now the isofactors for the semistretched coupling of two orthonormal S U ( 4 ) 3  
SU(2) x SU(2) states into the third state may be written as follows: 

I ( A  ,h2h3)  ( i l h 2 i 3 )  ( A  '1 A;,+',) 
K ;  ST I?; St K ' ;  SIT' 

K s  K s  K i  KT R,  K ;  "I G( A ,  A > A 3 ,  S J I 6 I", !2!3, 3 7 )  = c  x . K s K r  K ,  K T K T  

Here 0 and 6 are the orthogonalisation coefficients of the projected (Draayer) and 
dual states; K ,  I? and K '  are the sets of the eigenvalues of the labelling operators or 
some other labels of the orthonormal states. The summation parameters K ; ,  K >  
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accept values corresponding to linearly independent states of the Draayer basis. The 
summation over all possible values of KsKT and l?,l?, (including the region of the 
linearly dependent states) allows us to escape the appearance of the expansion 
coefficients of the linearly dependent states of the irreps ( A l A 2 A 3 )  and (AlA2A3). 

The inverse orthogonalisation coefficients d coincide with the boundary resubduc- 
ing coefficients. The explicit expressions for 0 and d for the states of two-parametric 
irreps ( A l A 2 0 )  and ( O A 2 A 3 )  will be given in a future publication. For irreps ( A 1 O O ) ,  
(OOA3)  or ( O A 2 0 )  the coefficienis d are equivalent, respectively, to C?;s, (-l)S'k,C",s 
(in the both cases S = T )  or C^,; (see (A2a)  and (A26) of Norvaiias and AliSauskas 
1989). For special irreps (loo),  (200) and (010) these factors are equal to + I  or * I /& 

- - -  

4. Action of the unit tensor operators into the Draayer basis 

The SU(4)-reduced matrix elements of the unit (according to Racah-Biedenharn) 
tensor operators are equal to 1 for the given values of shifts A (  = h j  - h, ( i  = 1,2 ,3 ,4) ;  
the complete (usual) matrix elements in the orthogonal basis coincide with the coupling 
coefficients of SU(4). We use the permutation relation 
a ( j L % j 3 - )  ps  T 

S M s T M T  M ~ K ~ P M ~ K ~  
( 2 S + 1 ) ( 2 T + l )  = c  s ~ ~ ~ m ~ m , ~ s ~ j ( 2 S ' + 1 ) ( 2 T ' + l )  

t i  i,i 1 when acting with the unit tensor operator a - I  -- 1 on the Draayer basis states (2.2). 
Now, the action of the operators as;s+;T (equivalent to the double tensors (A>lls:;) 

either the expansion immediately in terms of the standard intrinsic states, or the less 
specific G Z  states which need to be replaced by structures which include operators of 
type (2.4) acting on standard intrinsic states. In the first case their matrix elements, 
i.e. special coupling coefficients of SU(4) (see Baird and Biedenharn 1963, Biedenharn 
and Louck 1968, Le Blanc and Hecht 1987, AliSauskas et al 1972) are equivalent to 
the CG coefficients of SU(2) with some dimension-type factors. In  the other case, the 
corresponding structures are particularly determined by the coupling in frames of the 
block-diagonal SU(2) subgroups and by the coupling coefficients and the matrix 
elements of the SU(4) generators. The terms of the third kind may include both 
constructions. 

The operators A:':' and Bb:;:' act completely in frames of the first block-diagonal 
SU(2) and give only the terms that correspond to the semistretched coupling: 

(i i,i ~ S M s T M r  

or g" I .J ) of the block-diagonal subgroup U(2)O U(2)) on the intrinsic states (2.3) gives 
nl,n, 

(4.2) 

Only the operators A::;) and @:' acting on (2.3) give the antisemistretched terms 
(with A I  = A, = 0 if i, = 0): 

(4.3) 
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( In  the case of the operators B$)t' and @:g' the CG coefficients of SU(2)  in (4.2) and 
(4.3) are trivial.) 

In addition, the action of on (2.3) gives the semistretched terms: 
[I 1 001 

82r308140 c F,0,',221 
A i A ?  

where A I  + A 2  = 1, 
F , O l , 2 ,  [ l l A ? o O 1  = [ ( h i  - h,+ l)'1(hi - h4+2) ' l (h4-  h,)A2(hk- h,+ l )" ] - '  

D0,',-0_, 2 - 1  2 ( k ~ )  = D01',:,ll 2 1 , ( - k 7 )  

(4.5) 
[I 1,001 [ A  I 001 

= ( h l +  1)Al+ hzS , - (h ,+ h 4 ) / 2 -  k 3 + 2  ( 4 . 6 ~ )  
[I 1 001 [ 1 I OO] 

D,l'::O-l 2 I : ( k , )  = D,,,',',,I 2 - 1  2 ( - k i )  
= [ ( h 3 / 2  - k ,  + 1 ) (  A 3 / 2  + kx) ] '  '. (4.66) 

Of course, the technique of section 3 is more convenient in the semistretched case 
when (4.3) together with (4.1) is sufficient in the antisemistretched case. The terms 
neither semistretched nor antisemistretched may appear in the case of the operators 
a(200)  or a ( o ~ n ~  . Particularly, the action of A:tl,'il'''' on ( 2 . 3 )  gives 

where 

Here and  below a = 1 or 2, di = 2  or I ( a  # 6 ) ;  p = 3  Or 4, p=4 or 3 ( p  # f )  so that 
A , = A , = l ,  Ai,=Ap=O. 

The action of A$,:' on (2.3) gives 

(4.9) 

( 4 . 1 1 ~ )  

(4.1 1 b )  
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and the action of &?;p' on (2.3) gives 

( 4 . 1 1 ~ )  

(4.12) 

(4.13) 

(4.14) 

We have also found semistretched terms that are too cumbersome to be presented 
here. 

In the next step the operators see (2.4)) in (4.4), (4.9) and (4.13) should 
be replaced by the operators S ,  or T ,  that may be included into the structure of the 
projection operators of (4.1). 

may be represented in the Draayer basis. 
Depending on the increase of S, T and decrease of h 2 ,  the parameters K ; ,  K ;  which 
appear may be shifted into the region of the linearly dependent states. The expansion 
coefficients orthogonalised with the help of O(;$$',fT' and O K  IK;iT give (in a 
factorised form) the coupling coefficients of SU(4) =I SU(2) x SU(2). 

( h  X,h I In this way the operators 

' ( A  A , A  . S  T )  

5. Concluding remarks 

In this paper we presented the algorithms for evaluating the coupling coefficients (unit 
tensor operators) of SU(4) =I SU(2) x SU(2) (SO(6) 3 S 0 ( 3 ) 0 S 0 ( 3 ) )  in the non- 
orthonormal Draayer basis or in its dual basis. All their structure elements are tabulated 
in an algebraic-polynomial form or expressed in the framework of the theory of angular 
momentum (thus they are also tabulated). When the general approach (see section 4) 
leads to the most complicated construction an alternative presented in section 3 is 
possible. However, for a recursive construction of the more general SU(4) unit tensor 
operators in the Draayer basis only the approach of section 4 is convenient. The 
remaining problem is the orthonormalisation of isofactors, for which the overlaps of 
the Draayer states are needed. The corresponding orthonormal isofactors of SU(4) 3 
SU(2) x SU(2) coincide with the corresponding isofactors of S ,  =I S,,OS,,. (see 
Vanagas 1971, Haase and Butler 1984) with N " =  1 or 2. 
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Appendix. On the overlaps of the Draayer basis states 

The most convenient expression for the overlaps of irreps [ h i  h,00] or ( A , A20) is (3.6) 
of AliSauskas (1982) (see also (5.4) of AliSauskas 1984, where L ,  = S +  L,  = IS - TI, 
A = A , , v = A 2 ,  A, = 0 or 1 and v - L2 - A ,  is even). The number of terms in each sum 
does not exceed the multiplicity of S, T in ( A , A 2 0 ) .  The case with T >  S (more 
interesting from the physical point of view) may be obtained by the substitution S o  T. 

Equation (3.1) with X I  = x, = A 3  = 0,  A' ,  = A , ,  A i  = A * ,  A \  = A 3  allows one to write 
the recursive expression for overlaps: 

= ( - l ) k 3 - k ' [ ( f ~ 3  - k3) ! ($A3+ k 3 ) ! ( $ A 3 -  k ; ) ! ($A,+ k; ) ! ]" '  

(Here and below we omit the parameters M,,  MT.) 
The application of the intrinsic states (2.3) allows us a more direct derivation of 

the expressions for overlaps, related to (3.2) of AliSauskas (1983a). For this purpose 
we use the projection operators of Lowdin (1964) and Shapiro (1965) expanded as an 
ordered polynomial in S - ,  T , ,  T - ,  S ,  and the permutation formulas (Asherova and 
Smirnov 1968) of the factorised SU(4) generators together with the specific action of 
the generators of the spin, isospin and block-diagonal subgroup on the intrinsic states. 
The overlap has been expanded in terms of the matrix elements of the factorised SU(3) 
generators E ;,Eg'E,";"'E;; between the semi-highest weight states of SU(3) (that are 
obtained from the highest weight states by acting with the SU(2) generators). The 
obtained Saalschutzian 4F3( 1) series (see Slater 1966) have appeared after applying 
the corrected equation (2.1 1) of Asherova and Smirnov (1968) with +b - a inserted 
before - t  on the right-hand side. In this way the overlap is expressed as 

( ( A l A ? A 3 ) E  I ( A l A Z A 3 ) E  ) 
KSS; KTT K LS; K k T 

( T - K T ) ! ( T - K ' , ) ! ( S + K , ) ! ( S + K ; ) !  
( T +  K T ) !  ( T + K ',)! ( S  - K s ) !  ( S -  K L) !  = (2S+ 1) (2T+ 1) 

(-I) ' (  T +  K T  + t )  ! ( T +  K ;+ t ) !  ( + A 3  + kj, + y ) !  
t ! (2  T + t + l ) !  y ! ({A, - k[ ,  - y ) !  ( k ;  - k3 + y ) !  

1 ( - l ) r (  S - K ,  + r ) !  ( S  - K :  + r ) !  
X 

( T +  k ,  - k ; +  t - y  - p ) ! ?  r ! ( 2 S + r +  l ) ! ( S -  K : - y + r - p ) !  

[ ; (A,  + A 3 )  + A 2  - S - T - k ,  + k ;  - r - t + y + p ] !  
[ $ ( A ,  + A ~ ) + A ? -  T - k l  - k ;  - t ] !  

X 
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where the sum over r (together with the subsequent factor) may be expressed as 

(s-  K ~ S  - K w - i  ) K , - K ; + ’ + p  

[:(A, + A 3 )  + A z +  S - T - kl + k i  + y + p  + l]! 

(-l)’(y + p  + z) !  [;(A, + A , )  + A ? +  S - T - k ,  + k\ - t - z ] !  
(‘43) ’’ Z z ! ( S - K s - z ) ! ( S + K L , - z ) ! ( K s - K L , + z ) !  

In addition the following inequality should be satisfied here by the summation para- 
meters: 

( A ,  +A3)/2+A2- S - T -  k ,+  k’, - t + y + p  3 0. 

Expression (A2) or  (A2), (A3) is indefinite unless k ,  + k‘, S 0 and  k,  + kj  3 0. The 
phase relation (2.9) of NorvaiSas and AliSauskas (1989) (applied together or separately 
to KsKT and K k K  >) allows us to use (A2) for k ,  + k’, 2 0, k3 + k ;  0 or k ,  3 k’, , k3 < k ; ,  
when the substitution S cf T, K s  cf - KT, K Is - - K > allows us to escape the indefinite- 
ness for k ,  + k ;  3 0,  k ,  + kl, 3 0. 

The overlaps d o  not change after the transposition S- T, K s  - KT, K cf K >. The 
phase factor (-1) K ~ - K ;  appears after the transposition A ,  - A 3  applied together with 
the reflection of K s  and K i .  

Our expression (A2), (A3) includes finite intervals of summation for the fixed 
parameters A , , A 3 ,  S and  A >  - T. Therefore, it is convenient for small values of S and 
large (near to A ? )  values of T. Equation ( A l )  or rather complicated transformations 
of (A2), (A3) allow us to find the polynomial in A2, S, T expressions of overlaps for 
small values of A , ,  h j .  Some examples that are presented below. 

The overlaps of dual states of the basis E in the case of the irreps ( A , A 2 0 )  were 
found in Petrauskas and  AliSauskas (1987). By analogy with (5.13) of AliSauskas 
(1987)t, the analytical inversion (substitution of A , ,  A I ,  A 3 ,  S, T by - A l  -2 ,  -Az-2,- 
A 3  - 2, -S  - 1, - T - 1 applied to (A2) together with the factor 

gives the overlaps of the E states. This result may be convenient especially in the 
non-overcomplete cases when only the phase factor (see (2.9) of NorvaiSas and  
AliSauskas 1989) remains in the expansion coefficients R (see ( A l l )  of NorvaiSas and  
AliSauskas (1989)). 

The inverse orders of the Gram-Schmidt procedure should be chosen in the case 
of the dual bases E and E. The choice of these orders requires additional investigation 
unless A ,  = 0, or A 2  = 0, or A 3  = 0, when the labels are linearly ordered. Since the explicit 
orthogonalisation coefficients for the Draayer and dual states of the irreps (h,AzO) will 
be given in a future publication, we present here the concrete expressions the overlaps 
for irreps ( lA21) and (2A21): 

) ( (1A21)E 1 (1A21)E 
KSS; KTT K i S ;  K > T  

( 2 S + 1 ) ( 2 T + l )  

+ T h e  first multiplication symbol x on the right-hand side of (5 .11 )  of AliSauskas (1987)  should be corrected 
to a plus sign, +. The corresponding parameter l K ’ 1 ~  A +  6. 
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- (2S+ 1 ) ( 2 T +  1) - 
4( A 2  - S - T - A0+ 3) !! 

A 2  !(A2+3)! 
( A 2  - S + T + A,+ 3) !! ( A ?  + S - T + A,+ 3 )  !! ( A 2  + S + T - A0 + 5 )  ! ! 

X 

+terms related by symmetries}. (A61 

Expressions (A5) and  (A6) have been derived from ( A l )  by a cumbersome but 
straightforward evaluation when expressions (A2) helped us to make conjectures about 
expansion into the indecomposable polynomials. Equation ( A l )  allowed us to obtain 
simple expressions for overlaps in the cases enumerated by (5.15) of NorvaiSas and 
AliSauskas (1989). 
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